Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Chem ; 95(11): 5009-5017, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2275207

ABSTRACT

As the pathogenic viruses and the variants of concern greatly threaten human health and global public safety, the development of convenient and robust strategies enabling rapid analysis of antiviral drug efficacy and mutation-induced resistance is quite important to prevent the spread of human epidemics. Herein, we introduce a simple single-particle detection strategy for quick analysis of anti-infective drugs against SARS-CoV-2 and mutation-induced drug resistance, by using the wild-type and mutant spike protein-functionalized AuNPs as virus-like plasmonic nanoprobes. Both the wild-type and mutant virus-like plasmonic nanoprobes can form core-satellite nanoassemblies with the ACE2@AuNPs, providing the opportunity to detect the drug efficacy and mutation-induced resistance by detecting the changes of nanoassemblies upon drug treatment with dark-field microscopy. As a demonstration, we applied the single-particle detection strategy for quantitative determination of antiviral efficacy and mutation-induced resistance of ceftazidime and rhein. The mutations in the receptor-binding domain of Omicron variant could lead to an increase of EC50 values of ceftazidime and rhein, formerly from 49 and 57 µM against wild-type SARS-CoV-2, to 121 and 340 µM, respectively. The mutation-induced remarkable decline in the inhibitory efficacy of drugs was validated with molecule docking analysis and virus-like plasmonic nanoprobe-based cell-incubation assay. Due to the generality and feasibility of the strategy for the preparation of virus-like plasmonic nanoprobes and single-particle detection, we anticipated that this simple and robust method is promising for the discovery and efficacy evaluation of anti-infective drugs against different pathogenic viruses.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Antiviral Agents/pharmacology , Ceftazidime , Gold , SARS-CoV-2/genetics , Mutant Proteins , Mutation , Protein Binding
2.
Front Immunol ; 13: 1074077, 2022.
Article in English | MEDLINE | ID: covidwho-2198913

ABSTRACT

Introduction: An approach toward novel neutralizing IgY polyclonal antibodies (N-IgY-pAb) against SARS-CoV-2 S-ECD was developed. Material and methods: The novel N-IgY-pAb and its intranasal spray response against the wild type ("'WH-Human 1") SARS-CoV-2 virus, variants of Delta or Omicron were up to 98%. Unique virus peptides binding to N-IgY-pAb were screened by a SARS-CoV-2 proteome microarray. Results: Seventeen mutation-free peptides with a Z-score > 3.0 were identified as potent targets from a total of 966 peptides. The new findings show that one is in the RBM domain (461LKPFERDISTEIYQA475 ), two are in the NTD domain (21RTQLPPAYTNSFTRG35, 291CALDPLSETKCTLKS305) four are in the C1/2-terminal (561PFQQFGRDIADTTDA575,571DTTDAVRDPQTLEIL585,581TLEILDITPCSFGGV595, 661ECDIPIGAGICASYQ675 ), three are in the S1/S2 border (741YICGDSTECSNLLLQ755, 811KPSKRSFIEDLLFNK825, 821LLFNKVTLADAGFIK835) one target is in HR2 (1161SPDVDLGDISGINAS1175) and one is in HR2-TM (1201QELGKYEQYIKWPWY1215). Moreover, five potential peptides were in the NSP domain: nsp3-55 (1361SNEKQEILGTVSWNL1375), nsp14-50 (614HHANEYRLYLDAYNM642, ORF10-3 (21MNSRNYIAQVDVVNFNLT38, ORF7a-1(1MKIILFLALITLATC15) and ORF7a-12 (1116TLCFTLKRKTE121). Discussion and conclusion: We concluded that the N-IgY-pAb could effectively neutralize the SARS-CoV-2. The new findings of seventeen potent conserved peptides are extremely important for developing new vaccines and "cocktails" of neutralizing Abs for efficient treatments for patients infected with SARS-CoV-2.


Subject(s)
COVID-19 , Humans , Animals , Chickens , Proteome , SARS-CoV-2 , Antibodies, Neutralizing , Peptides
3.
Front Public Health ; 10: 904855, 2022.
Article in English | MEDLINE | ID: covidwho-1924182

ABSTRACT

Purpose: Telerehabilitation, as an effective means of treatment, is not inferior to traditional rehabilitation, and solves the problem of many patients who do not have access to hospital-based training due to costs and distance. So far, the knowledge structure of the global use of telerehabilitation has not been formed. This study aimed to demonstrate the state of emerging trends and frontiers concerning the studies of telerehabilitation through bibliometric software. Methods: Literature about telerehabilitation from 2000 to 2021 was retrieved from the Web of Science Core Collection. We used CiteSpace 5.8.R3 to analyze the publication years, journals/cited journals, countries, institutions, authors/cited authors, references, and keywords. Based on the analysis results, we plotted the co-citation map to more intuitively observe the research hotspots and knowledge structure. Results: A total of 1,986 records were obtained. The number of annual publications gradually increased over the investigated period. The largest increase occurred between 2019 and 2020. J TELEMED TELECARE was the most prolific and the most cited journal. The United States was the most influential country, with the highest number of publications and centrality. The University of Queensland was the most productive institution. The author Tousignant M ranked the highest in the number of publications and Russell TG ranked the first in the cited authors. Respectively, the articles published by Cottrell MA and Russell TG ranked the first in the frequency and centrality of cited references. The four hot topics in telerehabilitation were "care","stroke", "telemedicine" and "exercise". The keyword "stroke" showed the strongest citation burst. The two frontier keywords were "physical therapy" and "participation". The keywords were clustered to form 21 labels. Conclusion: This study uses visualization software CiteSpace to provide the current status and trends in clinical research of telerehabilitation over the past 20 years, which may help researchers identify new perspectives concerning potential collaborators and cooperative institutions, hot topics, and research frontiers in the research field. Bibliometric analysis of telerehabilitation supplements and improves the knowledge field of telemedicine from the concept of rehabilitation medicine and provides new insights into therapists during the COVID-19 pandemic.


Subject(s)
COVID-19 , Telemedicine , Telerehabilitation , Bibliometrics , Humans , Pandemics , United States
4.
Acta Pharm Sin B ; 11(1): 304-307, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1044920
SELECTION OF CITATIONS
SEARCH DETAIL